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There has been considerable recent interest in alkylphosphinate esters as substrates for 

study of displacement at phosphorus. ~-4 Interpretation of some of this data is complicated by 

the problem of possible attack at alkyl carbon rather than phosphorus. We report here data on 

relative rates of hydrolysis in acyclic and cyclic compounds and elucidation of the position of 

attack by H1aO- in both series through use of no-enriched water. 

The rates were studied titrimetrically in 60% dimethoxyethane-40% water solution. Some 

of the esters were studied at several temperatures so that relative rates at the same temperature 

could be obtained. The ionic strength of the reaction solution was kept constant; there is a slight 

negative ionic strength dependence for the reaction. The hydrolyses exhibit second order 

kinetics, first order in ester and first order in base. 

In hydrolyses with water enriched in ‘8O, we observe, within experimental error, com- 

plete attack of HO-at phosphorus (eq. 1). This is based upon the following n0 contents (in 

atom %) for experiments on methyl diethylphosphinate (1, R = CH3: HzO(normal, 0.203; 

Hn(enriched), 1.953; starting ester, 0.202; sodium dirthylphosphinate recovered from normal 

hydrolysis, 0.195; phosphinic acid recovered from Hpm hydrolysis, b. 948; ester recovered 

from reaction in enriched base, 0. 202; phosphinic acid that was put through reaction conditions 

using enriched base, 0.212. The results show 88% P-O cleavage which is a lower limit because 

of the slightly hygroscopic nature of the sodium phosphinate. 5 

H’*O- _9 R,P’BO - L t R’OH 

Tables 1 and 2 contain relative rates of hydrolysis of acyl substituted and alkyl substituted 

phosphinates. Although there is not yet enough data to separate the effects completely into steric 

and electronic effects, 6 it seems clear that both must be important in displacement at phosphorus 

in phosphinates. Electronic effects alone will certainly not explain the relative rates in Table 1, ’ 

and the effects in Table 2 are much larger than observed for acetates. 6 We have shown that 

electronic effects are important in displacement at phosphinyl phosphorus. * Therefore, the 
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complete distortion of the rate order in Table 1 from that predicted by u* indicates that steric 

effects are very important. This is probably due to the crowding due to increase of coordination 

number from 4 to 5 at phosphorus in the transition state for displacement.9 Displacements at 

tetrahedral carbon which would result in similar crowding generally proceed by dissociative, 

carbonium ion pathways rather than by the associative pathway followed for displacement at 

phosphorus in phosphinates. 

Effects of rings are given in Tables 2 and 3. The availability of the four membered ring 

compound, 2, (R = CHa)” led us to a complete study of alkaline hydrolyses. Experiments with 

water enriched in ‘80 have established that, within experimental error HO- attacks completely 

at phosphorus. ” This proves that the speed of hydrolysis of this is truly remarkable. ” A com- 

bination of steric effects and ring size effects would predict a very slow rate of hydrolysis if 

displacement were proceeding in SN2 fashion. The fact that the rate is actually slightly faster 

than the corresponding A, indicates that displacement must be possible by a pathway with 

geometry different from that for SNZ at carbon, i. e., entering and leaving groups must be able 

to. be other than co-linear with phosphorus. In the series of phosphinates with five membered 

rings, interpretation of the data can be based upon acceleration due to additional strain caused 

by a double bond13 and deceleration when a double bond is conjugated to phosphorus due to an 

increase in electron density compared to the unconjugated compound. Complete understanding 

of this and related data may involve pseudorotation, I3 the steric effects of the other groups 

bonded to phosphorus, geometry of attack at phosphorus, etc. 9 Further experiments on phos- 

phinates should enable resolution of these questions. 

Table 1 

Relative Rate Constants for Alkaline Hydrolysis 
of Non-Cyclic Methyl Esters at 75°C 

Compound Relative Rate 

(CzHdzP(O)~H3 la 

bCd%)zP(O)OCH3 .3 

(WWHz) zP(O)~H, 1. 05 

(‘X&l zP(O)OCH3 4 

(GJU(CH3)P(O)~H3 36 

(‘=3)2P(O)~H3 53 

a Actual rati constant = 1. 1 x IO-' M-’ set-’ 
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Table 2 
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Relative Rate Constants for Alkaline Hydrolysis 
of Alkyl Phosphinates at 75°C 

Parent Compound 

(CzH&PO,R 

R = iC& C& -CH, 

(2) 1 21 160 

9 81 333 

(2) 

Table 3 

Relative Rates of Alkaline Hydrolyses of Cyclic Esters 

Compound R= T(“C) Rel. Rate Constanta 

(CzHs)zPO& CH3 50 1 

(C&,)8’0& CzH5 75 1 

G P02R 
C2H5 75 1.5 

r: I POzR 

cF5 

c2H5 

CH3 50 42 

CH3 

75 

75 

50 

2. 9 

4. ob 

1.2 

a Relative to diethylphosphinates for which the rates of the methyl ester at 

50” and the ethyl ester at 75” are set equal to 1. 0. 

b 
E. A. Dennis and F. H. Westheimer, J. Am. Chem. Sot., 88, 3431 (1966). 
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